肝脏的准确细分是诊断疾病的先决条件。自动分割是计算机辅助检测和肝病诊断的重要应用。近年来,医学图像的自动化处理已经取得了突破。然而,腹部扫描CT图像的低对比度和肝脏形态的复杂性使得精确的自动分割具有挑战性。在本文中,我们提出了RA V-NET,这是基于U-Net的改进的医学图像自动分割模型。它有以下三个主要创新。建议Cofres模块(复合原始功能剩余模块)。通过更复杂的卷积层和跳过连接,使其获得更高级别的图像特征提取功能并防止梯度消失或爆炸。建议AR模块(注意恢复模块)以减少模型的计算工作。另外,通过调整通道和LSTM卷积来感测编码和解码模块的数据像素之间的空间特征。最后,有效地保留了图像特征。介绍了CA模块(通道注意模块),用于提取具有依赖性的相关通道,并通过矩阵点产品加强它们,同时在没有依赖性的情况下削弱无关的通道。达到关注的目的。 LSTM卷积和CA模块提供的注意机制是强证神经网络性能的保证。 U-Net网络的准确性:0.9862,精确度:0.9118,DSC:0.8547,JSC:0.82。 RA V-NET的评估指标,精度:0.9968,精确度:0.9597,DSC:0.9654,JSC:0.9414。分割效果的最代表性度量是DSC,其在U-NET上改善0.1107,JSC改善0.1214。
translated by 谷歌翻译
Crowdsourcing, in which human intelligence and productivity is dynamically mobilized to tackle tasks too complex for automation alone to handle, has grown to be an important research topic and inspired new businesses (e.g., Uber, Airbnb). Over the years, crowdsourcing has morphed from providing a platform where workers and tasks can be matched up manually into one which leverages data-driven algorithmic management approaches powered by artificial intelligence (AI) to achieve increasingly sophisticated optimization objectives. In this paper, we provide a survey presenting a unique systematic overview on how AI can empower crowdsourcing - which we refer to as AI-Empowered Crowdsourcing(AIEC). We propose a taxonomy which divides algorithmic crowdsourcing into three major areas: 1) task delegation, 2) motivating workers, and 3) quality control, focusing on the major objectives which need to be accomplished. We discuss the limitations and insights, and curate the challenges of doing research in each of these areas to highlight promising future research directions.
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
Learning semantic-rich representations from raw unlabeled time series data is critical for downstream tasks such as classification and forecasting. Contrastive learning has recently shown its promising representation learning capability in the absence of expert annotations. However, existing contrastive approaches generally treat each instance independently, which leads to false negative pairs that share the same semantics. To tackle this problem, we propose MHCCL, a Masked Hierarchical Cluster-wise Contrastive Learning model, which exploits semantic information obtained from the hierarchical structure consisting of multiple latent partitions for multivariate time series. Motivated by the observation that fine-grained clustering preserves higher purity while coarse-grained one reflects higher-level semantics, we propose a novel downward masking strategy to filter out fake negatives and supplement positives by incorporating the multi-granularity information from the clustering hierarchy. In addition, a novel upward masking strategy is designed in MHCCL to remove outliers of clusters at each partition to refine prototypes, which helps speed up the hierarchical clustering process and improves the clustering quality. We conduct experimental evaluations on seven widely-used multivariate time series datasets. The results demonstrate the superiority of MHCCL over the state-of-the-art approaches for unsupervised time series representation learning.
translated by 谷歌翻译
Missing data are ubiquitous in real world applications and, if not adequately handled, may lead to the loss of information and biased findings in downstream analysis. Particularly, high-dimensional incomplete data with a moderate sample size, such as analysis of multi-omics data, present daunting challenges. Imputation is arguably the most popular method for handling missing data, though existing imputation methods have a number of limitations. Single imputation methods such as matrix completion methods do not adequately account for imputation uncertainty and hence would yield improper statistical inference. In contrast, multiple imputation (MI) methods allow for proper inference but existing methods do not perform well in high-dimensional settings. Our work aims to address these significant methodological gaps, leveraging recent advances in neural network Gaussian process (NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior predictive) distribution. The MI-NNGP methods are shown to significantly outperform existing state-of-the-art methods on synthetic and real datasets, in terms of imputation error, statistical inference, robustness to missing rates, and computation costs, under three missing data mechanisms, MCAR, MAR, and MNAR.
translated by 谷歌翻译
Compared to the great progress of large-scale vision transformers (ViTs) in recent years, large-scale models based on convolutional neural networks (CNNs) are still in an early state. This work presents a new large-scale CNN-based foundation model, termed InternImage, which can obtain the gain from increasing parameters and training data like ViTs. Different from the recent CNNs that focus on large dense kernels, InternImage takes deformable convolution as the core operator, so that our model not only has the large effective receptive field required for downstream tasks such as detection and segmentation, but also has the adaptive spatial aggregation conditioned by input and task information. As a result, the proposed InternImage reduces the strict inductive bias of traditional CNNs and makes it possible to learn stronger and more robust patterns with large-scale parameters from massive data like ViTs. The effectiveness of our model is proven on challenging benchmarks including ImageNet, COCO, and ADE20K. It is worth mentioning that InternImage-H achieved the new record 65.4 mAP on COCO test-dev. The code will be released at https://github.com/OpenGVLab/InternImage.
translated by 谷歌翻译
Adversarial perturbation plays a significant role in the field of adversarial robustness, which solves a maximization problem over the input data. We show that the backward propagation of such optimization can accelerate $2\times$ (and thus the overall optimization including the forward propagation can accelerate $1.5\times$), without any utility drop, if we only compute the output gradient but not the parameter gradient during the backward propagation.
translated by 谷歌翻译
Providing accurate estimated time of package delivery on users' purchasing pages for e-commerce platforms is of great importance to their purchasing decisions and post-purchase experiences. Although this problem shares some common issues with the conventional estimated time of arrival (ETA), it is more challenging with the following aspects: 1) Inductive inference. Models are required to predict ETA for orders with unseen retailers and addresses; 2) High-order interaction of order semantic information. Apart from the spatio-temporal features, the estimated time also varies greatly with other factors, such as the packaging efficiency of retailers, as well as the high-order interaction of these factors. In this paper, we propose an inductive graph transformer (IGT) that leverages raw feature information and structural graph data to estimate package delivery time. Different from previous graph transformer architectures, IGT adopts a decoupled pipeline and trains transformer as a regression function that can capture the multiplex information from both raw feature and dense embeddings encoded by a graph neural network (GNN). In addition, we further simplify the GNN structure by removing its non-linear activation and the learnable linear transformation matrix. The reduced parameter search space and linear information propagation in the simplified GNN enable the IGT to be applied in large-scale industrial scenarios. Experiments on real-world logistics datasets show that our proposed model can significantly outperform the state-of-the-art methods on estimation of delivery time. The source code is available at: https://github.com/enoche/IGT-WSDM23.
translated by 谷歌翻译
Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.
translated by 谷歌翻译
Synthetic datasets are often used to pretrain end-to-end optical flow networks, due to the lack of a large amount of labeled, real-scene data. But major drops in accuracy occur when moving from synthetic to real scenes. How do we better transfer the knowledge learned from synthetic to real domains? To this end, we propose CLIP-FLow, a semi-supervised iterative pseudo-labeling framework to transfer the pretraining knowledge to the target real domain. We leverage large-scale, unlabeled real data to facilitate transfer learning with the supervision of iteratively updated pseudo-ground truth labels, bridging the domain gap between the synthetic and the real. In addition, we propose a contrastive flow loss on reference features and the warped features by pseudo ground truth flows, to further boost the accurate matching and dampen the mismatching due to motion, occlusion, or noisy pseudo labels. We adopt RAFT as the backbone and obtain an F1-all error of 4.11%, i.e. a 19% error reduction from RAFT (5.10%) and ranking 2$^{nd}$ place at submission on the KITTI 2015 benchmark. Our framework can also be extended to other models, e.g. CRAFT, reducing the F1-all error from 4.79% to 4.66% on KITTI 2015 benchmark.
translated by 谷歌翻译